B22, Sheet 3

- 1. Let M be a finitely generated R-module, set J = J(R), the Jacobson radical of R. Prove: if M = MJ then M = 0. Is this true if M is not finitely generated?
- 2. (i) Prove that an integral extension of a Jacobson ring is Jacobson.

(ii) Prove that the polynomial ring F[t] over a field F is a Jacobson ring (iii) Find a PID R such that $J(R) \neq 0$. Can you complete the sentence: A PID is a Jacobson ring if and only if ...

- 3. Complete the missing details in the proof of Proposition 41: show that the maps c and e respect inclusions and intersections of ideals, and that e respects sums.
- 4. (i) Let f(t₁,...,t_n) be a polynomial over a field F. Suppose there exist infinite subsets X₁,...,X_n of F such that f(x₁,...,x_n) = 0 for all (x₁,...,x_n) ∈ X₁ × ··· × X_n. Prove that f is the zero polynomial.
 (ii) Let U be an algebraic set in Fⁿ and V an algebraic set in F^m. Show that U × V is an algebraic set in F^{n+m}. A subset X of U is dense in U if U is the smallest algebraic set that contains X. Show that if X is a dense subset of U and Y is a dense subset of V then X × Y is dense in U × V.
- 5. (i) Let M be a finitely generated R-module and $\phi : M \to M$ a module endomorphism. Prove that if ϕ is surjective then is an isomorphism). (Hint: Consider M as an R[t]-module where t acts like ϕ .)

How does this relate to (i)?

(ii) Let $F = R^d$ be a free module and Y a generating set for F. Prove that if $|Y| \le d$ then Y is a basis and |Y| = d.

6. A module M has length $\lambda(M) = n$ if there is a chain of submodules $0 = M_0 < M_1 < \cdots < M_n = M$ and n is maximal, $\lambda(M) = \infty$ if there is no maximal such n.

(i) Prove that length is additive on extensions of modules, i.e. if $N \leq M$ then $\lambda(M) = \lambda(N) + \lambda(M/N)$.

(ii) Suppose that M is a Noetherian R-module and that $MP^k = 0$ for some maximal ideal P of R and some integer k. Show that M has finite length.